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Statistically Accurate Invariant Measure 

Informed Forecasting of QG Dynamics
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Network Architecture

Example QG system visualization with the following features:

Sliced Wasserstein

QG Invariant Measures

Results

Ongoing Research 

Quasi Geostrategic System1: 
• Study of midlatitude, large-scale Oceanic Flow.

• The system formulation is a single primary equation called the quasi-

geostrophic barotropic equation. This equation describes the time 

evolution of Potential Vorticity. 
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Resolution Wind Force Wind Width Length of The Domain

128*128 0.40 𝑵𝒎−𝟐 0.12 2400 km

The neural network architecture is primary designed to approximate a 

surrogate which forecast the next time step of the system via 

Interpolation and learning masked time steps. The network contains 2 

main parts: 

• Fourier Neural Operator1 (FNO) is used to rebuild a Masked trajectory 

• RMSE Loss + Secondary Loss (loss between 2 probability distributions 

of attractor’s invariant measures)

The Sliced Wasserstein2 Distance 

provides a computationally efficient metric 

for comparing invariant measures 

associated with complex, high-

dimensional attractors. We find the 

distance by projecting points onto many 

lines and, for each line, summing the 

distances between the sorted, 

corresponding points, then averaging the 

results.
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Resolution Wind Force Range (𝜏0) Wind Width Range (𝛿) Dataset Size

64*64 0.02 – 0.40 𝑵𝒎−𝟐 0.12 – 0.60 256

Training Dataset: Our training dataset contains 256 unique systems. It was 

generated by applying Latin Hypercube Sampling (LHS) to parametrically 

vary the Wind Force and Wind Width parameters.

Abstract: We develop a deep learning surrogate for the Quasi-Geostrophic (QG) system governing oceanic flows. A Fourier Neural Operator (FNO), 

is trained to learn the system's time derivative for efficient forecasting. We introduce a hybrid loss function that combines a standard Root Mean 

Squared Error (RMSE) with a Sliced Wasserstein (SW) loss. This SW term improves dynamic consistency by minimizing the statistical divergence 

between the ground truth and predicted system attractors, yielding a surrogate that captures both short-term accuracy and long-term climate 

statistics.

Invariant Measures considering for Dynamics-Informed Loss? 
We enforce physical consistency by matching the statistical distributions of 

key dynamical quantities between the ground truth simulation and our 

surrogate model

1. Potential Vorticity 𝐪 : The fundamental currency of the flow, defining the 

eddies and jets.

2. Nonlinear Advection 𝐉 𝛙, 𝐪  : The rate of vorticity transport by the velocity 

field, which governs the formation of complex structures.

3. Vorticity Tendency 
𝛛𝐪

𝛛𝐭
 : The net rate of change of the system, encapsulating 

the combined effects of advection, dissipation, and forcing.

The Wind Stress formulation: 𝝉 𝒚 =  𝝉𝟎𝒔𝒆𝒄𝒉𝟐( Τ𝒚 𝜹)

Acknowledgement 

Our ongoing research focuses on three key areas. First, we are analyzing the 

effect of data subsampling on model performance. Second, we are developing 

models for extrapolative forecasting, using our dynamics-informed loss to 

enhance long-term stability. Finally, train on analytical derivation of the invariant 

measure of the QG through exact conserved quantities and statistical mechanics 

(subtract mean and derive probability distribution for the fluctuations)

1. University of Calgary, Calgary, Alberta, Canada

2. Purdue University, West Lafayette, IN, United States

* This work is a follow-up to the “Training neural operators to preserve invariant

measures of chaotic attractors”3
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Experiment Setup: 

Resolution 64*64

Time Steps 500T

Sub-sampling 20

dt 2s

Time Horizon 0-1000s

Training Systems 200

Testing Systems 25

Final Loss: 𝑳 = 𝑹𝑴𝑺𝑬 + 𝝀 σ𝒊
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