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Informed Forecasting of QG Dynamics
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Abstract: We develop a deep learning surrogate for the Quasi-Geostrophic (QG) system governing oceanic flows. A Fourier Neural Operator (FNO),
is trained to learn the system’'s time derivative for efficient forecasting. We introduce a hybrid loss function that combines a standard Root Mean
Squared Error (RMSE) with a Sliced Wasserstein (SW) loss. This SW term improves dynamic consistency by minimizing the statistical divergence
between the ground truth and predicted system attractors, yielding a surrogate that captures both short-term accuracy and long-term climate
statistics.

QG System Sliced Wasserstein

Quasi Geostrategic System™:

»  Study of midlatitude, large-scale Oceanic Flow. WX, Y) = W(Xg,Yg)? d6 Where Xy = {{X;|0)}ie; € R
* The system formulation is a single primary equation called the quasi- e
geostrophic barotropic equation. This equation describes the time | Projection Map | The Distance
evolution of Potential Vorticity. ® provides a computationally efficient metric
o~ | for comparing invariant measures
@ +J( ) + 0_1/) — _dAY + f(x, t) A . associated with complex, high-
ot J.q) +F ox Y+ ," e | dimensional attractors. We find the
. % e | distance by projecting points onto many
QG Visualization & Dataset O'U . lines and, for each line, summing the
| - | | o N e distances between the sorted,
Example QG system visualization with the following features: =@ A ® corresponding points, then averaging the
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QG Invariant Measures

Invariant Measures considering for Dynamics-Informed Loss?
We enforce physical consistency by matching the statistical distributions of
key dynamical quantities between the ground truth simulation and our
surrogate model

1. Potential Vorticity q : The fundamental currency of the flow, defining the
eddies and jets.

Diagnostics ] . ] L - :
T T, — 2. Nonllnegr Advection J(W, q) ..The rate of vorticity transport by the velocity
;! field, which governs the formation of complex structures.
;- B . 3. Vorticity Tendency % . The net rate of change of the system, encapsulating

the combined effects of advection, dissipation, and forcing.

Final Loss: L=RMSE +AY,W (u;, u’;)
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Training Dataset: Our training dataset contains 256 unique systems. It was -
generated by applying Latin Hypercube Sampling (LHS) to parametrically Resolution il . ~
vary the and parameters. S::;Sr:::g 52? -
Resolution Wind Force Range (r,) Wind Width Range (6) Dataset Size dt 2s :n . .

6464 0.02 — 0.40 Nm2 0.12 - 0.60 256 Time Horizon  0-1000s | .

: : Training Systems 200 o
The Wind Stress formulation: ©(y) = tosech?(y/d) Testinjs:stems e . . . . .

Network Architecture Time-Averaged Energy Spectrum (System 1) Enargy Spactrum Ervor ve, Tralning Epachs (Avaraged)

The neural network architecture is primary designed to approximate a S —
surrogate which forecast the next time step of the system via N
Interpolation and learning masked time steps. The network contains 2 £..
main parts: V H
* Fourier Neural Operator! (FNO) is used to rebuild a Masked trajectory .. 'MMV
 RMSE Loss + Secondary Loss (loss between 2 probability distributions 1= ="
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of attractor’s invariant measures)

1D Marginal Distributions (System 1)
Distribution of ag/at Distribution of J(y,q) Distribution of q

Dataset
System_I: [ t1, 12, ..., tm ; (tauO, tdel

|
System_m: [ t1, t2, ..., tm; (tauO, tdel) ]

|
Data Processing & Sub-Sampling
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Prediction vs. Ground Truth

00000000 ' [eeee0c0e0000. Trajectory Ny
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Trajectory 1 t1, ..., tl+s, ........, tm-s ] L . ’ y
. X W Our ongoing research focuses on three key areas. First, we are analyzing the
Masking some time steps (50% here) (G (u, @) 6 o ' G effect of data subsampling on model performance. Second, we are developing
- . J ! models for extrapolative forecasting, using our dynamics-informed loss to
atch of 1 Trajectory | i Vs - _ _ ’ ) ] _ _
U [ 5 5 0 00 ] ‘s enhance long-term stability. Finally, train on analytical derivation of the invariant
SN - measure of the QG through exact conserved quantities and statistical mechanics

- J - J

(subtract mean and derive probability distribution for the fluctuations)
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